Apply Now!
GIVE TO VUU | INTERNATIONAL | CAMPUS POLICE | QUICK LINKS
VUU Technology

Using the VUU Wireless Network

Acquiring A Wireless LAN Adapter

To access VUU’s Wi-Fi, you will need a wireless PC adapter for your laptop or desktop computer. The VUU Wi-Fi Network utilizes equipment that is compatible with all 802.11standards including 802.11 b, a, g, and N all over campus in some locations and expanding the 802.11 AC.

Any wireless LAN adapter certified as 802.11 compliant by the Wireless Ethernet Compatibility Alliance will work with the VUU Wi-Fi Wireless Network.

You will need your VUU domain user ID and password to connect. Your VUU account is the first part of your VUU email address. If your email address is studentuser@vuu.edu your domain account would be just the studentuser part of the address and the password of your email account.

We also have a Guest wireless network. If you are visiting and need temporary internet access, join the VUU Guest Wi-Fi and complete the self-registration form and a temporary password will be sent via text message to your phone.

802.11AC
the newest generation of Wi-Fi signaling in popular use, 802.11ac utilizes dual band wireless technology, supporting simultaneous connections on both the 2.4 GHz and 5 GHz Wi-Fi bands. 802.11ac offers backward compatibility to 802.11b/g/n and bandwidth rated up to 1300 Mbps on the 5 GHz band plus up to 450 Mbps on 2.4 GHz.
 
802.11n (also sometimes known as "Wireless N") was designed to improve on 802.11g in the amount of bandwidth supported by utilizing multiple wireless signals and antennas (called MIMO technology) instead of one. Industry standards groups ratified 802.11n in 2009 with specifications providing for up to 300 Mbps of network bandwidth. 802.11n also offers somewhat better range over earlier Wi-Fi standards due to its increased signal intensity, and it is backward-compatible with 802.11b/g gear.

802.11g
In 2002 and 2003, WLAN products supporting a newer standard called 802.11g emerged on the market. 802.11g attempts to combine the best of both 802.11a and 802.11b. 802.11g supports bandwidth up to 54 Mbps, and it uses the 2.4 Ghz frequency for greater range. 802.11g is backwards compatible with 802.11b, meaning that 802.11g access points will work with 802.11b wireless network adapters and vice versa.

802.11a
While 802.11b was in development, IEEE created a second extension to the original 802.11 standard called 802.11a . Because 802.11b gained in popularity much faster than did 802.11a, some folks believe that 802.11a was created after 802.11b. In fact, 802.11a was created at the same time. Due to its higher cost, 802.11a is usually found on business networks whereas 802.11b better serves the home market. 802.11a supports bandwidth up to 54 Mbps and signals in a regulated frequency spectrum around 5 GHz. This higher frequency compared to 802.11b shortens the range of 802.11a networks. The higher frequency also means 802.11a signals have more difficulty penetrating walls and other obstructions.

802.11b
IEEE expanded on the original 802.11 standard in July 1999, creating the 802.11b specification. 802.11b supports bandwidth up to 11 Mbps, comparable to traditional Ethernet. 802.11b uses the same unregulated radio signaling frequency (2.4 GHz) as the original 802.11 standard. Vendors often prefer using these frequencies to lower their production costs. Being unregulated, 802.11b gear can incur interference from microwave ovens, cordless phones, and other appliances using the same 2.4 GHz range. However, by installing 802.11b gear a reasonable distance from other appliances, interference can easily be avoided.

802.11
In 1997, the Institute of Electrical and Electronics Engineers (IEEE) created the first WLAN standard. They called it 802.11 after the name of the group formed to oversee its development. Unfortunately, 802.11 only supported a maximum network bandwidth of 2 Mbps - too slow for most applications. For this reason, ordinary 802.11 wireless products are no longer manufactured